LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – MATHEMATICS

FIRST SEMESTER - NOVEMBER 2007

MT 1807 - DIFFERENTIAL GEOMETRY

AB 22

Date: 02/11/2007 Time: 1:00 - 4:00	Dept. No.		Max. : 100 Marks
Answer ALL the questions			
I a) Show that the principal	normal at consecutive p	oints do not intersect	unless $\tau = 0$.
b) Obtain the equation of the	` '	of the space curve.	[5]
c) Derive the Serret-Frenet	formulae for the space (or)	curve in terms of Da	rboux vector[15]
d) Define osculating plane. curve and also in terms of	Derive the equation of	the osculating plane a	t a point on the
II a) Find the plane that has $x = u^4 - 1$, $y = u^3 - 1$ an	•	t origin with the curve	
b) Find the torsion of the	$curve x = a \cos 2u, y = a$	(or) $\sin 2u, z = 2a \sin u$.	[5]
c) Derive the equation of	evolute and involute.	(or)	[15]
d) State and prove the fun	damental theorem for sp	` /	
III a) Obtain the geometrica	al interpretation of metri		
b) Find the first fundame	ental magnitudes for the	(or) curve $\overline{r} = (u \cos v, u \sin v)$	(n v, cv). [5]
c) Derive tangential and p	polar developable associ	ated with a space cur (or)	ve. [15]
		erms of parameters.	ference to [2+2+4+7]
IV a) Mention the duality be	etween space curve and	-	
b) Prove that the second which equals twice the on the tangent plane.	fundamental form at an		
c) (1) Derive the equation (2) Show that the curve $(1+u^2)du^2 - 2uvdu$	es $u + v$ constant, are g	-	
, ,	,	(or)	
d) State and prove Euler's curvature.	meorem on normal cur	vature. Also define G	[15]
V a) Prove that sphere is the	e only surface in which	all points are umbilics (or)	3.
b) Derive the Weingarter	n equation.	(01)	[5]
c) Derive the partial diffe	erential equation of surf	face theory. (or)	[15]
d) State the fundamental	theorem of Surface The	` '	
	*******	******	